Theoretical population genetics of repeated genes forming a multigene family.

نویسنده

  • T Ohta
چکیده

The evolution of repeated genes forming a multigene family in a finite population is studied with special reference to the probability of gene identity, i.e., the identity probability of two gene units chosen from the gene family. This quantity is called clonality and is defined as the sum of squares of the frequencies of gene lineages in the family. The multigene family is undergoing continuous unequal somatic crossing over, ordinary interchromosomal crossing over, mutation and random frequency drift. Two measures of clonality are used: clonality within one chromosome and that between two different chromosomes. The equilibrium properties of the means, the variances and the covariance of the two measures of clonality are investigated by using the diffusion equation method under the assumption of constant number of gene units in the multigene family. Some models of natural selection based on clonality are considered. The possible significance of the variance and covariance of clonality among the chromosomes on the adaptive differentiation of gene families such as those producing antibodies is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The evolutionary rate of duplicated genes under concerted evolution.

The effect of directional selection on the fixation process of a single mutation that spreads in a multigene family by gene conversion is investigated. A simple two-locus model with two alleles, A and a, is first considered in a random-mating diploid population with size N. There are four haplotypes, AA, Aa, aA, and aa, and selection works on the number of alleles A in a diplod (i = 0, 1, 2, 3,...

متن کامل

The evolution of multigene families under intrachromosomal gene conversion.

A model for the evolution of the probabilities of genetic identity within and between loci of a multigene family in a finite population is formulated and investigated. Unbiased intrachromosomal gene conversion, equal crossing over between tandemly repeated genes, random genetic drift and mutation to new alleles are incorporated. Generations are discrete and nonoverlapping; the diploid, monoecio...

متن کامل

Population genetics of multigene families that are dispersed into two or more chromosomes.

The evolution of multigene families whose members are dispersed into two or more nonhomologous chromosomes is studied from the standpoint of population genetics. By using a simple model of gene conversion, equilibrium and transient properties of the probability of identity of genes belonging to the family are investigated. Also, the time until fixation of a mutant belonging to a subdivided mult...

متن کامل

An Extension of a Model for the Evolution of Multigene Families by Unequal Crossing over.

Evolution of a multigene family is studied from the standpoint of population genetics. It is assumed that the multigene family is undergoing continuous interchromosomal unequal crossing over, mutation and random frequency drift. The equilibrium properties of the probability of gene identity (clonality) are investigated, using two measures: identity probability within and between chromosomes. Th...

متن کامل

The coalescent and infinite-site model of a small multigene family.

The infinite-site model of a small multigene family with two duplicated genes is studied. The expectations of the amounts of nucleotide variation within and between two genes and linkage disequilibrium are obtained, and a coalescent-based method for simulating patterns of polymorphism in a small multigene family is developed. The pattern of DNA variation is much more complicated than that in a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 88 4  شماره 

صفحات  -

تاریخ انتشار 1978